Как подключить солнечные батареи: схемы и пояснения. Схема подключения солнечных панелей Как правильно подключить несколько солнечных панелей

Либо просто хотите организовать независимое электроснабжение участка, первым делом нужно выбрать подходящую электростанцию и разобраться с ее подключением. Как первый, так и второй момент может вызвать множество вопросов, особенно у новичков в электрике. Чтобы читатели « » умели соединять панели между собой и подключать их к домашней сети далее мы рассмотрим наиболее эффективные схемы подключения солнечных батарей к контроллеру, аккумулятору и сети загородного дома!

Итак, первое, о чем Вы должны иметь представление – из чего состоит комплект солнечной электростанции. Основные элементы системы представлены следующими устройствами:

  1. Солнечные батареи или как их еще называют солнечные элементы, панели или фотоэлектрические преобразователи. Они нужны для преобразования солнечного света в электроэнергию.
  2. Контроллер солнечных панелей. Следит за зарядом и разрядом АКБ. Бывают разных видов – On/Off, PWM, MPPT. Контроллеры перечислены в порядке возростания сложности и эффективности алгоритмов заряда. MPPT – позволяют добиться большей эффективности за счет того, что находят оптимальные параметры напряжения и тока, для закачки максимально возможной мощности в аккумуляторы. Это происходит на основании анализа режима работы в текущий момент и ВАХ солнечной панели. Основная задача контроллера – следить за зарядом АКБ, чтобы не допустить перезаряда или чрезмерного их разряда. Простыми словами, когда аккумуляторная батарея полностью заряжена или разряжена АКБ отключаются от панели или нагрузки.
  3. Аккумулятор, предназначен для накопления сгенерированной электроэнергии.
  4. Инвертор – преобразовывает 12 Вольт в переменные 220, необходимые для работы домашних электроприборов, системы освещения и бытовой техники.

Обращаем Ваше внимание на то, что между всеми устройствами: контроллером, инвертором, нагрузкой и аккумулятором желательно поставить предохранители, которые защитят систему при !

В простейшем исполнении схема подключения солнечных батарей к контроллеру, аккумулятору, инвертору и нагрузке выглядит следующим образом:

Как Вы видите, особых сложностей в подключении нет, главное соблюдать полярность и подключать все штекеры в нужные разъемы контроллера. В таком варианте очень сложно что-то перепутать. А вот если Вы решили использовать электроэнергию от солнца одновременно со стационарной сетью, схема подключения солнечных батарей в электросеть дома должна выглядеть следующим образом:

Тут нужно пояснить: резервируемая нагрузка – это , котел и, к примеру, холодильник. Не резервируемая – бытовая техника, свет в доме и т.д. Чем больше емкость аккумулятора, тем дольше смогут проработать резервируемые электроприборы в автономном режиме!

Со схемой подключения солнечных батарей к сети переменного тока разобрались. Теперь нужно рассмотреть не менее важную часть вопроса – правильное соединение панелей между собой.

Если у вас готовая солнечная панель, то вам нужно узнать её выходное напряжение и подключить к контроллеру, но они бывают на 12 и 24В и 12/24В. Если у вас солнечная панель рассчитана на работу с 12В аккумуляторами и контролерами нужно соединить их напрямую. Иногда нужно соединять батареи последовательно, чтобы получить нужное напряжение. Поэтому рассмотрим три основных способа соединения. Такие же рекомендации для сборки солнечной батареи своими руками из отдельных ячеек.

Солнечные батареи – очень выгодный способ стать независимым от плохой работы общей электросети. Кроме этого, созданная ими электрическая энергия является абсолютно бесплатной.

Особенности подключения

  1. Солнечная панель.
  2. Устройство, которое контролирует заряд.
  3. Аккумулятор.
  4. Инвертор.
  5. Электрическая сеть дома.

Обязательно в эту схему входят предохранители от короткого замыкания и лампочка , которая показывает уровень нагрузки. Предохранители устанавливаются на провода с положительным зарядом перед аккумулятором, лампочкой, инвертором.

Лампочку и аккумуляторы подключают к контроллеру заряда.

Эта схема предусматривает наличие одной солнечной панели или нескольких, работающих с одинаковой нагрузкой.

Несколько батарей соединены одним проводом, площадь поперечного сечения которого всегда больше 4 мм². Если планируется установить на крыше дома несколько солнечных панелей, и часть из них будет наклонена под другим углом, то схема подключения предусматривает наличие контроллера для каждой панели.

Практика показала:

  • Монокристаллические способны генерировать ток в течение 3 десятков лет и даже больше.
  • Более дешевые поликристаллические будут работать на протяжении 20 лет.
  • Гибкие панели имеют срок службы 7-20 лет. Наиболее короткую «жизнь» имеют изделия первого поколения, наиболее длинную – изделия второго поколения. Главным минусом является быстрая деградация. В течение первых 24 месяцев работы их мощность падает на 10-40%.

Используемые на больших солнечных станциях модули смогли работать с одинаковой мощностью в течение 25 лет. Заявленные в описании характеристики выполнялись на 100%. Это говорит об отсутствии деградации. Некоторые из панелей уменьшили выработку на 10%. Производители гарантировали уменьшение выработки на 20%.

Независимо от срока использования светочувствительные элементы никогда не теряют своей производительности. То есть может пройти 50 лет, и они могут производить такое же количество электроэнергии. На ухудшение выработки влияет разрушения защитных пленок, которые позволяют влаге проникать внутрь панели и вызывать коррозию всех соединений. Этот минус приводит к увеличению сопротивления, чрезмерному нагреву, разрушению соединений. Аккумуляторы могут работать 2-15 лет, силовая электроника – 5-20 лет.

Одним из наиболее практичных источников альтернативной энергии считается солнечная батарея. Она способна накапливать и преобразовывать свет в электричество даже в условиях облачности. Тем не менее, ее стоимость не позволяет отечественному потребителю перейти на независимое электроснабжение. Решение - самодельная солнечная батарея.

Устройство солнечной батареи

В отношении солнечной батареи, как нельзя к месту, фраза все гениальное - просто. Устройство состоит из двух элементов:

  • блоков преобразователей;
  • корпуса батареи.

Все остальное - это контакты, микросхемы и дополнительные гаджеты, которые нужны исключительно для увеличения функциональных возможностей солнечной батареи.

Блок преобразователь - это кремниевая пластина, которая изготовлена либо монокристаллическим, либо поликристаллическим методом. Первый вариант, более эффективный, второй - более дешевый.

Корпус батареи, как правило, изготавливают из пластика. Это обычная плита, к которой крепятся блоки преобразователи.

Электрическая схема солнечной батареи

Правильное подключение блоков преобразователей - это главный залог успешной работы солнечной батареи. При параллельном подключении увеличивается сила тока, при последовательном - напряжение. Для того, чтобы оба эти параметра были максимальными, используют параллельно-последовательное подключение.

От перегревания и перегорания контактов при сверх нагрузках защищают диоды, по одному на каждую четверть фотоэлемента. Если диодов нет, то блок преобразователь выйдет из строя после первого дождя.

Так как напряжение и сила тока на солнечной батарее не соответствуют параметрам бытовой техники, необходимо осуществить накопление и перераспределение электроэнергии. Для этого подключаются два аккумулятора. Первый, является накопительным, второй - резервным.

Наличие двух аккумуляторов объясняется тем, что в хорошую солнечную погоду зарядка идет достаточно быстро, поэтому необходимо куда-то девать избыточную энергию. За процессом следит специальный контроллер, сделанный по принципу реостата. При достижении 80-90% заряда основного аккумулятора, контроллер переводит подачу электричества на дополнительный.

Важно: принцип работы описан поверхностно, поскольку для создания самодельной солнечной батареи особого значения не имеет.

Принцип солнечной батареи: как это работает

Блоки преобразователи или фотоэлемнты - это кремниевые пластины. Кремний или силиций - это морской песок, вернее это вещество наиболее соответствует чистому силицию по химическому составу. Песок, имеет ту же атомную решетку, что и алмаз. Хрупкость материала связанна с более длинным расстоянием между атомами. Именно эта схожесть позволила существенно удешевить технологию производства солнечных батарей и запустить ее на конвейер.

В чистом виде, кремний является полупроводником, поэтому его кристаллизуют. Поликристаллы изготовить проще, но они имеют значительно больше граней, в результате чего электроны не могут двигаться прямолинейно. Монокристалл обеспечивает прямолинейное поступательное движение частиц. Кроме того, электропроводность повышается добавлением в кристаллическую решетку атомов мышьяка или фосфора.

Еще одно интересное свойство силиция - он невидим для инфракрасного излучения. Таким образом, фотоэлемнты поглощают только полезную часть солнечного спектра.

Преобразование света проходит по следующему принципу:

  • солнечная энергия попадает на кремниевые пластины;
  • они нагреваются и высвобождают электроны;
  • электроны начинают активное движение от пластин по проводникам;
  • проводники заряжают аккумулятор.

Конструкция солнечных батарей

Переходя от теории к практике, первым делом, необходимо выполнить расчеты и определить количество блоков преобразователей. Для этого необходимо определить мощность солнечного света. На входе в атмосферу она составляет около 1300 Вт/м², но возле земли, особенно в облачную погоду, редко превышает 200 Вт/м², при этом следует понимать, что около 40% спектра - бесполезное инфракрасное излучение, т.е. реальная мощность всего 120 Вт/м². В солнечную погоду, когда солнце в зените, мощность возрастает до 500-600 Вт/м², но закладываться на такие высокие показатели не стоит, поэтому будем считать по минимуму.

Интенсивное солнечное излучение на протяжении года составляет в среднем 9 часов. Следовательно, солнечная батарея площадью 1 м² за день производит 120*9=1 кВт электроэнергии. При этом нужно учесть еще и КПД, максимальное - 25%. Таким образом, за сутки с солнечной батареи площадью 1 м² можно получить около 0,3 кВт электроэнергии. Если на дворе стоит солнечная погода, то около 0,6 кВт.

Далее необходимо рассчитать количество потребляемой энергии за день. Для этого нужно разделить предыдущие показания счетчика на 30. Т.е. если в прошлом месяце было израсходовано 300 кВт, то расход в день составит 10 кВт в сутки. Чтобы полностью обеспечить такой дом электроэнергией потребуется примерно 20 м² солнечных батарей.

Важно: для качественного и бесперебойного электроснабжения понадобятся дорогие аккумуляторы для солнечных батарей. Это обстоятельство объясняется не только большой емкостью, но и устойчивостью электролита к постоянному режиму зарядки-разрядки.

Производство солнечных батарей

Процедура самостоятельной сборки не требует особых навыков и сводится к выполнению простой инструкции:

1. Изготовить основу для фотоэлементов.

2. Подготовить основу к неблагоприятным факторам окружающей среды.

3. Закрепить блоки преобразователи.

4. Соединить блоки проводами.

5. Защитить фотоэлементы при помощи установки стеклянной крышки.

6. Подключить выход к аккумулятору.

С каждым из пунктов нужно разобраться детальнее, чтобы в последствии не было ошибок. Например, для основы используют либо твердый пластик, либо дерево. Другие материалы категорически не допускаются по технике безопасности. Пластик более прост в обработке, но от высоких температур он быстро теряет свои свойства. Термостойкие модификации стоят, как правило, дороже чем дерево.

Деревянная основа изготавливается из обычной фанеры не менее 4 мм в толщину. Вырезается основание, размеры которого зависят от количества и размеров фотоэлементов. По краю основания устанавливается защитная гарда или бортик. Такой же бортик должен быть по периметру каждого фотоэлемента. Лучше, если он будет изготовлен из рейки или деревянного массива.

В получившихся квадратиках нужно просверлить дырки под контакты. В зависимости от размеров фотоэлементов, их число равняется 4, 6 или 8. Для сверления лучше использовать сверло в 6 или 8 мм, чтобы отверстие было достаточно большим и контакты не соприкасались с деревом. В идеале каждое отверстие желательно обработать жидкой резиной или битумом. Это исключит возможность возгорания.

Далее заготовку нужно обработать защитными антисептиками, прогрунтовать и покрасить. Краска, как не сложно догадаться, должна быть белой, чтобы не рассеивать солнечную энергию. Кроме того, акрилосодержащие краски лучше не использовать, поскольку они подвержены разрушению под воздействием прямых солнечных лучей.

Блоки преобразователи крепятся либо на клей, но в таком случае их повторное использование будет невозможно, либо вставляются в специальные защелки. Если размер солнечной батареи небольшой, до 1 м², допускается фиксация фотоэлементов без дополнительного крепления.

Следующий шаг - соединение всех контактов. Делать это можно либо параллельно, либо последовательно. Так как смешанная схема предполагает наличие дополнительного дорогостоящего оборудования и на реальное КПД влияет достаточно опосредованно. Для соединения контактов нужен паяльник и качественный припой, лучше, если это будет серебро.

Совет: работать с солнечными батареями намного удобнее при помощи газовых паяльников, поскольку они обеспечивают больше мобильности.

Когда конструкция готова, ее необходимо защитить от попадания влаги и мусора. Для этого подойдет ударопрочное оргстекло. Установка солнечных батарей предполагает минимальное участие в процессе преобразования и накопления электроэнергии, поэтому на защитном коробе экономить не стоит. Способ фиксации - молекулярный клей.

Совет: подобное клеящее вещество лучше покупать в узкопрофильных, специализированных магазинах, поскольку в строительных гипермаркетах, и тем более, на рынке, найти настоящий молекулярный клей практически невозможно.

Аккумулятор имеет два полюса, важно подключить фотоэлементы так, чтобы полюсность была одинаковой. Иначе, солнечная батарея спалит аккумулятор.

Еще один принципиальный момент подключения солнечных батарей - вольтаж. Напряжение на выходе должно быть на 30-40% больше, чем напряжение на аккумуляторе, иначе процесс зарядки не пойдет. Это обстоятельство является главным минусом любой солнечной батареи. Единственное решение проблемы - установка трансформатора, который будет выравнивать напряжение от аккумулятора к электросети. При этом не стоит забывать, что порядка 30% электроэнергии будут потеряны.

Система солнечных батарей

Описанная инструкция справедлива по отношению к одной солнечной батарее, но для обеспечения дома электричеством понадобится несколько таких изделий. Чтобы определить, как связывать между собой отдельные солнечные батареи, необходимо для начала определиться с порядком их работы. Варианта есть два:

  • несколько малоемких аккумуляторов, подающих ток на трансформатор;
  • один мощный аккумулятор.

Схема подключения солнечных батарей от нескольких аккумуляторов, также, имеет свои вариации:

  • каждый отдельный аккумулятор питает конкретный прибор;
  • все аккумуляторы передают электричество на трансформатор, который обеспечивает электричеством дом.

Первый вариант предпочтительнее, поскольку позволяет уменьшить нагрузку на отдельно взятый аккумулятор. Для реализации такой схемы солнечная батарея и прибор подключаются к источнику питания напрямую. При использовании трансформатора необходимо создать стационарную электроразводку. Этот вариант более актуален для мощных аккумуляторов.

Применение на практике

Учитывая, что стоимость новых фотоэлементов начинается от 900 руб. за штуку, а для сборки одной батареи их нужно не менее 30, становится очевидным - альтернативная энергетика является очень дорогим удовольствием. Определенным выходом станет приобретение б/у элементов солнечных батарей. Это снизит стоимость минимум вдвое.

Для изготовления батареи площадью 1 м², при использовании стандартных фотоэлементов, понадобится 60 шт. кремниевых пластин. Стоимость одной батареи 60*900=54 000 руб. Т.е. для полного перехода на независимое электропитание понадобится вложить более миллиона рублей.

Из-за такой дорогой стоимости, солнечные батареи применяются только в качестве вспомогательного электропитания. Наиболее часто встречается освещение на солнечных батареях. И этому есть вполне логичное объяснение.

При использовании энергосберегающих ламп на 20 или 40 В, достаточно собрать небольшую батарею, цена которой, вместе с аккумулятором и дополнительными материалами, будет около 30 000 руб. Этой батареи с лихвой хватит, чтобы обеспечить освещение не только внутри дома, но и на улице. Вместо стандартных включателей, устанавливают светореагирующие тумблеры, которые автоматически включают освещение при снижении интенсивности солнечного света. В доме лучше установить стандартные выключатели или диммеры.

Любая автономная система электроснабжения, питающаяся от солнечной энергии, включает в себя несколько обязательных элементов: солнечные панели или батареи, инвертор, контроллер заряда и разряда и, конечно, аккумулятор. О нем то и пойдет речь в нашей сегодняшней статье. Как известно, солнечные батареи предназначены для получения энергии из солнечного излучения, так вот аккумуляторы для солнечных батарей, выполняют иную функцию. Их первостепенная задача – это накопление электроэнергии и последующая ее отдача.

Главная техническая характеристика аккумулятора – его емкость. По этому показателю можно определить максимальное время работы системы электроснабжения в автономном режиме. Помимо емкости следует учитывать срок службы, максимальное количество циклов заряда-разряда, температурный диапазон работы и другие показатели. Средний срок службы аккумулятора составляет 5-10 лет. Эта цифра зависит от типа аккумулятора и условий его использования.

Типы аккумуляторов

В солнечной энергетике наибольшей популярностью пользуется герметичный свинцово-кислотный аккумулятор, производимый с использованием 2 различных технологий:

  1. Gelled Electrolite.
  2. Absorptive Glass Mat.

Технология Gelled Electrolite стала применяться в конце 50-х годов. Она заключается в добавлении оксида 4-хвалетного кремния в электролит, что способствует переходу электролита в гелеобразное состояние. Этот метод позволяет достичь абсолютной герметичности батареи, а циркуляция газов осуществляется в многочисленных порах желеобразного электролита. Большой плюс гелевых аккумуляторов для солнечных батарей, производимых с применением технологии Gelled Electrolite, это отсутствие необходимости доливки воды в течение всей эксплуатации.

Технология Absorptive Glass Mat была разработана в 70-е годы. Она предполагает использование пористого стекловолоконного заполнителя-сепаратора. Его пропитывают электролитом и тем самым переводят в безжидкостное состояние. Дозируя количество электролита, добиваются того, чтобы заполненными оказались лишь мелкие поры, так как более крупные предназначаются для свободной циркуляции газов. AGM-батареи также не требуют дополнительного обслуживания.

Солнечные аккумуляторные батареи, производимые и по первой, и по второй технологии, обладают как достоинствами, так и недостатками. Узнать о них более подробно Вы сможете из таблиц 1 и 2.

Таблица 1. Преимущества

AGM технология GEL технология
Абсолютно герметичная конструкция исключает возможность утечки кислоты и коррозии клемм, а также позволяет монтировать АКБ в любом положении, за исключением вверх дном. Допускается установка аккумулятора на боковую поверхность и вверх дном.
Являются более устойчивыми к глубоким разрядам.
Исключена возможность взрыва и выделения газов, но при условии правильной зарядки. Стабильная работа при повышенной влажности и высоком уровне вибрации.
Стабильная работа батареи при температуре ниже -30°С. Возможность эксплуатации при температурном режиме выше +50°С и ниже -35°С, а также вблизи чувствительных электронных устройств.
Увеличение срока службы за счет повышенной виброустойчивости. Увеличение срока службы за счет использования активного материала, увеличивающего емкость аккумуляторной батареи.
Время полной зарядки аккумулятора в 7 раз меньше, чем время зарядки обычной свинцово-кислотной АКБ. Минимальная цена в категориях «Цена/Количество месяцев службы» и «Цена/Число циклов».

Таблица 2. Недостатки

Тонкости подключения

Первое с чем нужно определиться прежде, чем выбирать аккумулятор, — это требуемая емкость. Как правило, это значение выбирается с учетом среднесуточного потребления электроэнергии, не забывая при этом и про глубину разряда, которая должна составлять не более 50-70%. Правильный режим заряда/разряда – это главное условие, которое способно продлить срок службы аккумуляторов для солнечных батарей. Также следует помнить, что слишком большой ток заряда снижает количество содержащегося в АКБ электролита, что может привести к выходу из строя аккумуляторной батареи.

Наибольшее распространение получили «солнечные» аккумуляторы с рабочим напряжением в 12 В. Как правило, их используют для сборки аккумуляторных блоков требуемого напряжения, например 24 В, 48 В и т.д. Основные параметры такого блока:

  • рабочая емкость;
  • ток заряда;
  • ток разряда.

Если же АКБ соединяются параллельно , то суммироваться будет не напряжение, а емкость . Напряжение же в этом случае останется неизменным. Но прежде, чем подключать батареи параллельно, необходимо выровнять на них напряжение.

Следующее условие – это температурный режим. Практически все АКБ для солнечной батареи способны выдерживать как низкие, так и очень высокие температуры. Но не стоит злоупотреблять этим, ведь увеличение температуры АКБ на 10°С приводит к ускорению всех химических процессов в 2 раза. А при заряде разница температур окружающей среды и батареи составляет 10-15°С, объясняется это процессом рекомбинации кислорода. Решить эту проблему поможет естественный обдув аккумуляторной батареи. Соблюдение всех правил – это залог долгой эксплуатации аккумулятора, об этом следует помнить.

Использование солнечной батареи, у которой максимальное значение генерируемого тока примерно равно току зарядки аккумулятора, позволяет автоматически заряжать АКБ при освещении. В этом случае следует предусмотреть некоторые правила подключения солнечной батареи к аккумулятору. Схема приведена на рисунке ниже.


Первое, что необходимо учесть – это подключение аккумулятора через диод (на схеме VD1). Такой способ поможет решить сразу 2 проблемы:

  1. При плохом освещении напряжение солнечной батареи может стать ниже, чем напряжение на аккумуляторе. Без диода это приведет к разряду аккумулятора через внутреннее сопротивление солнечной панели вместо заряда.
  2. Применение диода исключает необходимость отключения солнечной батареи от аккумулятора в темное время суток.

Помимо диода рекомендуется последовательное подключение миллиамперметра к солнечной батарее. Он позволяет определить ток какой величины потребляет аккумулятор солнечной энергии. Так вы сможете без проблем узнать, работает солнечная панель или нет. Если же Вы планируете использовать аккумулятор во время его зарядки или подзарядки, позаботьтесь о подключении в схему буферного конденсатора (на схеме С1).

Статью подготовила Абдуллина Регина

Небольшое видео о параллельном и последовательном подключении батарей:

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).
  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать. В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от , которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт. Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает. В этом случае можно подключить и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее. Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца. В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.

Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности. Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.

В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.

А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный. Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе, то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

Понравилась статья? Поделитесь с друзьями!