Как подобрать конденсаторы для запуска электродвигателя. Конденсатор для запуска двигателя 1.5 квт

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Последовательно введите или выберите исходные данные и нажмите кнопку «Рассчитать емкость рабочего и пускового конденсаторов» . Все исходные данные в большинстве случаев можно найти на табличке («шильдике») двигателя

Выберите способ соединения обмоток статора электродвигателя (на табличке указываются возможные способы подключения)

P - мощность электродвигателя

Введите мощность электродвигателя в ваттах (ее могут указывать на табличке в киловаттах). В приведенном снизу примере P=0.75 kW=750 Ватт

U - напряжение сети, В

Выберите напряжение сети. Допустимые напряжения указываются на табличке. Оно должно соответствовать способу подключения.

Коэффициент мощности, cosϕ

Введите значение коэффициента мощности (cosϕ) , который указан на табличке

КПД электродвигателя, η

Введите КПД электродвигателя, указанный на табличке. Если он указан в процентах, то значение надо разделить на 100. Если КПД не указан, то он принимается η=0,75

Для расчета использовались следующие зависимости:

Способ подключения обмоток и схема подключения рабочего и пускового конденсаторов Формула
Подключение «Звездой» Емкость рабочего конденсатора – Ср
Cр=2800*I/U; I=P/(√3*U*η*cosϕ); Cр=2800*P/(/(√3*U²*η*cosϕ).
Подключение «Треугольником» Емкость рабочего конденсатора - Cp
Cр=4800*P/(/(√3*U²*η*cosϕ).
Емкость пускового конденсатора при любом способе подключения Cп=2,5*Cр
Расшифровка обозначений в формулах: Cр – емкость рабочего конденсатора в микрофарадах (мкф); Cп – емкость пускового конденсатора в мкф; I – ток в амперах (А); U – напряжение сети в вольтах (В); η – КПД двигателя, выраженный в процентах, деленных на 100; cosϕ – коэффициент мощности.

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

Полипропиленовые пленочные конденсаторы CBB60 (российский аналог К78-17) и CBB65 Электролитические неполярные конденсаторы CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 В 220-275; 300; 450 В
Емкость, мкф 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 мкф 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 мкф

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном - емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Выберите из списка емкость первого конденсатора, а затем второго, подключаемого последовательно. Нажмите кнопку «Рассчитать». В списке приведен ряд номиналов конденсаторов серии CBB60

добавил комментарий на ютубе:

всё несколько проще. В любом вменяемом учебнике, с названием “Электрические машины”, в конце раздела, посвящённого теории асинхронного двигателя, рассматривается вопрос работы асинхронника в однофазном режиме, с различными схемами подключения обмоток. Там же приводятся формулы расчёта ёмкости рабочих и пусковых конденсаторов. Точный расчёт, довольно сложен – нужно знать специфические параметры двигателя. Упрощённая методика расчёта имеет следующий вид: Звезда Сраб = 2800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); Треугольник Сраб = 4800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); где, Сраб – ёмкость рабочего конденсатора, мкФ; Спуск – ёмкость пускового конденсатора, мкФ; Iном – номинальный фазный ток двигателя при номинальной нагрузке, А; Uсет – напряжение сети, к которой будет подключён двигатель, В. Пример расчета. Исходные данные: имеем асинхронный электродвигатель – 4 кВт; схема соединения обмоток –Δ / Y напряжение U – 220 / 380 В; ток I – 8 / 13,9 А. По токам мотора: 8 А – это фазный ток (т.е. ток каждой из трёх обмоток) двигателя на треугольнике и звезде, и он же линейный ток на звезде; 13,9 А – это линейный ток двигателя на треугольнике (в расчётах нам не понадобится). Ну, и, собственно, сам расчёт: Звезда Сраб = 2800 (Iном / Uсет) = 2800 (8 / 220) = 101,8 мкФ Спуск = Сраб 2÷3 = 101,8 2÷3 = 203,6÷305,4 мкФ (при тяжёлых условиях запуска – 509 мкФ) Треугольник Сраб = 4800 (Iном / Uсет) = 4800 (8 / 220) = 174,5 мкФ Спуск = Сраб 2÷3 = 174,5 2÷3 = 349÷523,5 мкФ (при тяжёлых условиях запуска – 872,5 мкФ) Тип рабочего конденсатора – полипропиленовый (импортный СВВ-60 или отечественный аналог – ДПС). Напряжение кондёра не меньше 400 В по переменке (пример маркировки: АС ~ 450 В), для советских бумажных МБГО рабочая напруга должна быть не меньше 500 В, если меньше – соединять последовательно, но это потеря ёмкости, естественно – так много кондёров набирать придётся). Для пусковых конденсаторов лучше, конечно, тоже использовать полипропиленовые или бумажные, но это будет дорого и громоздко. Для удешевления, можно взять полярные электролитические (это те, у которых на корпусе есть « + » и/или « – »), предварительно сделав из двух полярных электролитов, один неполярный, соединив два конденсатора минусами вместе (можно соединять и плюсами, но у некоторых конденсаторов минус соединён с корпусом этих кондёров и если соединять их плюсами, то придётся эти кондёры изолировать не только от окружающего “железа”, но и друг от друга, а иначе КЗ), а оставшиеся два плюса оставить для подключения к обмоткам мотора (не забываем, что при последовательном соединении двух одинаковых конденсаторов их суммарная ёмкость уменьшается в два раза, а рабочее напряжение в два раза увеличивается – например, соединив последовательно (минус к минусу) два конденсатора 400 В 470 мкФ, получим один неполярный кондёр с рабочим напряжением 800 В и ёмкостью 235 мкФ). Рабочее напряжение каждого из двух последовательно соединённых электролитов, должно быть не меньше 400 В. Нужную пусковую ёмкость набираем (при необходимости) параллельным соединением таких сдвоенных (т.е. уже неполярных) электролитов – при параллельном соединении конденсаторов, рабочее напряжение остаётся неизменным, а ёмкости суммируются (так же, как и при параллельном соединении аккумуляторов). Можно и не изобретать этот “колхоз” со сдвоенными электролитами – есть готовые пусковые неполярные электролиты – например, тип CD-60. Но, в любом случае, с электролитами (и неполярными, и уж тем более с полярными) есть одно НО – такие конденсаторы в сеть 220 В можно включать (полярные лучше вообще не включать) только на время запуска двигателя – использовать электролиты как рабочие конденсаторы нельзя – взорвутся (полярные почти сразу, неполярные чуть позже). С рабочим конденсатором на треугольнике двигатель теряет 25-30 % свой трёхфазной мощности, на звезде 45-50 %. Без рабочего конденсатора, в зависимости от схемы соединения обмоток, потеря мощности составит более 60 %. И ещё один момент по кондёрам: в youtube немало видео, где народ подбирает рабочие конденсаторы по звуку мотора на холостом ходу (без нагрузки) и пугаясь повышенного гудения двигателя, уменьшает ёмкость рабочих конденсаторов до тех пор, пока это гул не снизится до более-менее приемлемого. Это неправильный подбор рабочего кондёра – так занижается мощность двигателя под нагрузкой. Да, повышенное гудение мотора это не очень хорошо, но не слишком опасно для обмоток, если ёмкость рабочего конденсатора не завышена. Дело в том, что в идеале, ёмкость рабочего конденсатора должна плавно меняться, в зависимости от нагрузки двигателя – чем больше нагрузка, тем больше должна быть ёмкость. Но сделать такую плавную регулировку ёмкости довольно сложно, это и дорого, и громоздко. Поэтому подбирают такую ёмкость, которая будет соответствовать какой-то конкретной нагрузке мотора – как правило, номинальной. При соответствии ёмкости рабочего конденсатора расчётной нагрузке двигателя, магнитное поле статора круговое и гудение минимально. Но когда ёмкость рабочего конденсатора превышает нагрузку мотора, магнитное поле статора становится эллиптическим, пульсирующим, неравномерным, и вот это пульсирующее магнитное поле и вызывает гудение, из-за неравномерного вращения ротора – ротор, вращаясь в одном направлении, попутно дёргается то вперёд, то назад, и при повышенных токах в обмотках, двигатель развивает меньшую мощность. Поэтому если мотор гудит на средних нагрузках и на холостом ходу, то это не так страшно, а вот если гудение наблюдается при полной нагрузке, то это говорит о явно завышенной ёмкости рабочего кондёра. В этом случае, уменьшение ёмкости позволит снизить токи в обмотках двигателя и его нагрев, выровнять (“скруглить”) магнитное поле статора (т.е. уменьшить гудение) и повысить развиваемую мотором мощность. Но оставлять мотор в работе на холостом ходу длительное время с рабочим кондёром, рассчитанным на полную мощность двигателя, всё же не стоит – в этом случае на рабочем конденсаторе будет повышенное напряжение (до 350 В), а по обмотке, подключенной последовательно с рабочим конденсатором, будет протекать повышенный ток (на 30 % больше номинального – на треугольнике, и на 15 % - на звезде). При увеличении нагрузки на мотор, напряжение на рабочем кондёре и ток в последовательно соединённой с рабочим кондёром обмотке двигателя будут снижаться.

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

Используются конденсаторы рассматриваемого типа в системе подключения . В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Сеть переменного тока может служить источником питания в случае с использованием рассматриваемого типа конденсатора. Практически все используемые варианты исполнения неполярные, они имеют сравнительно больше для оксидных конденсаторов рабочее напряжение.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмотка и конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока , 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление , которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение .

Стоит отметить, что рабочий конденсатор присутствует в цепи практически постоянно. Поэтому стоит помнить о том, что они должны быть подключены параллельно.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя : треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой , как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Обзор моделей

конденсатор CBB-60

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

  1. Зачастую , работа электродвигателя может происходить без включения в цепь пускового конденсатора.
  2. Включать этот элемент в цепь рекомендуется только в том случае, если производится пуск под нагрузку.
  3. Также , большая мощность двигателя также требует наличие подобного элементам в цепи.
  4. Особое внимание стоит уделить процедуре подключения, так как нарушение целостности конструкции приведет к ее неисправности.

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

  • Электролитические;
  • Неполярные;
  • Полярные.

Описание разновидностей конденсаторов и расчет удельной емкости


Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

I 1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

U сети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

Сп = Ср + Со

где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.


Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие . 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.


Схема подключения “Треугольник” и “Звезда”

Схема подключения «Звезда»

А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.


Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок. При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных. Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.

Выбор ёмкости

Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.

Для рабочего конденсатора

Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:

  • I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
  • Uсети – напряжение сети с одной фазой, (В).

После выполнения расчетов получится емкость рабочего конденсатора в мкФ.

Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.

Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.

При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.

Для пускового конденсатора

Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.

Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя. При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора. Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.

Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.

Тип

После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы

Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.

Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:

  • Емкость (мкФ);
  • Рабочее напряжение (В).

Применение электролитических устройств

Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость. По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими. В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.

Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.

Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.

Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.

Напряжение

Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.

Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

Чтобы свести к не ошибиться при выборе рабочего напряжения, следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . Главная задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

Используемый электродвигатель имеет следующие характеристики:

Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

Расчет емкости рабочего выпрямителя:

Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В. Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ. Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».

Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

Видео: подключение однофазного двигателя в однофазную сеть

Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

Понравилась статья? Поделитесь с друзьями!